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ABSTRACT 
In this article, the separation axiom R0 of Shanin and later rediscovered by Davis, has been generalized to Pg - axiom 

using the concept of g-closure. The bitopological analogue of Pg - axiom named as pairwise Pg -axiom has been 

introduced and different characterizations and properties of Pg-space and pairwise Pg-space have been discussed. 
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I. INTRODUCTION 

 

The separation axiom R0 was introduced and studied by 

Shanin [8]. Later it was rediscovered by Davis in [1]. A 

space X is known as R0-space if x  cly implies that   

y  clx. We apply the notion of g-closure to define 

new separation axioms named as  Pg-spaces by using g-

closure in the definitions of R0. In bitopological spaces 

pairwise-R0 and pairwise-R1 spaces were seen in [7] and 

pairwise-R0 spaces have been studied in Misra and Dube 

[3]. 

  

In what follows, let i, j  {1, 2} and i ≠ j. 

 

II. PRELIMINARIES 
 

A subset A of X is said to be g-closed if cl(A)  U 

whenever A  U and U is open in (X, T) [2]. Clearly 

every closed set is g-closed. Complement of g-closed is 

called g-open. A set U is said to be g-neighbourhood of 

point x  X if x  U and U is g-open [4]. The family of 

all g-open (resp. g-closed) sets in a space (X, T) is 

denoted by GO (X, T) (resp. GC (X, T)). The g closure 

of a subset A in a space X, denoted by gcl A is defined 

as the intersection of all g-closed sets that contain A [2]. 

A space X is said to be g1  if for any two distinct points 

x and y of X there exists a g-open set U containing x but 

not y and a g-open set V containing y but not x [9]. A 

bitopological space (X, T1, T2) is said to be pairwise g1 

if for each pair of distinct points x, y of X, there is a Ti -

g-open set U containing x but not y and a Tj-g-open V 

containing y but not x [9]. A bitopological space X is 

pairwise R0 if for each G  Ti, x  G implies Tj-cl ({x}) 

 G [5]. A function f : (X, T1, T2) → (Y, T1*, T2*) is 

defined to be pairwise continuous if each of the 

functions between topological spaces f : (X, T1) → (Y, 

T1*) and f : (X, T2) → (Y, T2*) is continuous [6]. 

Similarly, pairwise closed is also defined. 

Lemma 2.1 [2]: If f: X  Y is a closed and continuous 

and if A is g-closed set in X, then f (A) is g-closed in Y.  

Lemma 2.2 [2]: If f: X  Y is a closed and continuous 

and if A is g-closed (res. g-open) set in Y, then f 
– 1

 (A) 

is g-closed (res. g-open) in X. 

  

III. P g - SPACE  
 

Definition 3.1: A space X is said to be a Pg-space if x  

cly implies that y  gclx. Clearly, every R0 space is 

a Pg-space but converse is not true. 

 

Example 3.2: Let X = a, b, c, T = , a}, {b, c}, X, 

GC (X, T) = , a, b, {c}, a, b, a, c, {b, c}, X.  

Then the space X is a Pg-space but not a R0-space. 

 

Theorem 3.3: A space X is a Pg-space if and only if for 

each open set S and each x  S, gcl{x}  S.  

Proof: Let S be an open set containing x and let y  S. 

Then x  cl{y}. By Pg-axiom, y  gcl{x}. Thus gcl{x} 

 S.    

Conversely, let x  cl{y}. Then there is an open set S 

(say) containing x, which has empty intersection with 

{y}, i.e. y  S. By hypothesis, gclx  S and thus, y  

gcl{x}. Hence X is a Pg-space. 

 

Theorem 3.4: For a space X, the following are 

equivalent: 

(a) X is a Pg-space. 
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(b) For each x  X, gclx  ker x.  

(c) If F is a closed set in X, then F is the intersection 

of all the g-open sets containing F. 

(d) If S is an open set in X, then S is the union of all 

the g-closed sets in X contained in S. 

(e) For a non empty set A, and an open set S in X 

such that S ∩ A ≠ , there is a g-closed set F  S 

such that F ∩ A ≠ . 

(f) For any closed set F in X and x  F, gclx ∩ F 

= .                                                

 

Proof: (a) → (b): Let y  gclx and S be an open set 

containing x. Since X is a Pg-space therefore by theorem 

3.3, gclx  S and thus y  S. Therefore x  gcl{y}, 

i.e. y  ker x. Hence gclx  kerx. 

 

(b)  → (c): Let F be a closed set. Let x  F. Then 

FX   is an open set containing x. If 

 y  gclx, then from (b), y  kerx and therefore x 

 cl{y}. So F.Xy   Hence, gclx  F,X   which 

implies, F  X – gcl{x} is a g-open set that does not 

contain x. Thus x does not belong to the intersection of 

all the g-open sets, which contain F. Hence (c) holds. 

 

(c)  → (d): By taking complements of (c), we get (d).  (d) 

→ (e): Since S ∩ A ≠ , therefore let x  S ∩ A. Then x 

 open set S. Therefore, from (d), S is the union of all 

the g- closed sets of X contained in S. Hence there 

exists a closed set F (say) such that x  F  S, which 

implies that F ∩ S ≠ . Thus (e) holds. 

(e)  → (f): Let F be a closed set in X and x  F. Then 

FX   is an open set in X such that F)(X   ∩ {x} ≠ . 

Therefore, from (e), there is a g-closed set K such that K 

 FX   and K ∩ {x} ≠ . So gclx  FX  . Hence 

gcl{x} ∩ F = . Thus (f) is true. 

 

(f) → (a): Let S be an open set containing x. Then, from 

(f), we have S)(X  ∩ gcl{x} =  and hence gclx  

S. Thus by theorem 3.3, X is a Pg-space. 

 

Theorem 3.5: A Pg-space X is g1 if it is T0. 

Proof: Let x ≠ y  T0-space X. Then, there exists an 

open set G containing x but not y. Since X is Pg-space 

therefore, by theorem 3.3, gclx  G. Therefore y  

gcl{x}. Take H = X – gcl{x} which is a g-open set 

containing y but not x. Also every open set is g-open. 

Thus g-open sets G and H satisfy the requirement of g1-

axiom for the space X. 

 

Theorem 3.6: If f is a closed and continuous mapping 

from a Pg-space X to a Space Y, then Y is also a Pg-

space. 

Proof: Let y1 and y2  Y and y1  cl{y2}. Then there 

exists an open set V1 such that y1  V1 and y2  V1. Put 

f 
1

(V1) = G. Since f is continuous therefore G is an 

open set in X. Also f 
1

(y1)  G, f 
1

(y2) ∩ G = .  Let x1 

 f 
1

(y1) and x2  f 
1

(y2). Therefore x1  cl{x2}. By Pg- 

axiom on X, x2   gcl{x1}. Thus there is a g-open set Vx 

in X containing x2 but not x1. X gcl {x1} = V
2x (say) 

containing x2 but not x1.  

Let V =  {V
2x : x2  f 

1
(y2)}.  Then V is a g-open set 

in X containing f 
1

(y2) but not x1. So VX   is a g-

closed set in X. Since f is closed and continuous, 

therefore V)f(X   is g-closed in Y containing y1 but 

not y2 [2].  Hence V))(f(XY   is a g-open set in Y 

containing y2 but not y1. Hence, y2  gcl {y1}. Thus Y is 

a Pg-space. 

 

IV. PAIRWISE  Pg- SPACE  

 

Definition 4.1: A bitopological space (X, T1, T2) is said 

to be pairwise Pg-space if x  Ti-cl{y}  y  Tj-gclx.  

 

Example 4.2:  Let X = {a, b, c}, T1 = , {a}, {b}, a, 

b, X, T2 = , a, b, X. 

GC (X, T1) = , {c}, {b, c}, a, c, X, GC (X, T2) = 

, {c}, {b, c}, a, c, X.   

Then (X, T1, T2) is a pairwise Pg-space.  

 

Theorem 4.3:  A space X is a pairwise Pg-space if and 

only if for each Ti-open set S and each x  S, Tj-gclx 

 S. 

Proof: Let S is a Ti-open set containing x and let y  S. 

Then x  Ti-cly. Since X is a pairwise Pg-space, 

therefore y  Tj-gclx. Hence Tj-gclx  S. 

Conversely, Let x  Ti-cl{y}. So there is a Ti-open set 

S (say) containing x but not y. By hypothesis, Tj-gclx 

 S and thus y  Tj-gclx. Hence X is a pairwise Pg-

space. 

Theorem 4.4: A space X is a pairwise Pg-space if and 

only if for each x  S, Tj-gclx  Ti-kerx. 
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Proof: Let y  Tj-gclxand S be a Ti-open set 

containing x. Since X is pairwise Pg, therefore, Tj-

gclx  S. Hence y  S. So x  Ti-cly, i.e. y  Ti-

kerx}. Thus, Tj-clx  Ti- kerx. 

Conversely, Let x  Ti-cly. Then y  Ti-kerx. 

Therefore, by hypothesis, y  Tj-gclx. Hence X is a 

pairwise Pg-space. 

 

Theorem 4.5: A pairwise Pg-space X is pairwise g1 if it 

is pairwise T0. 

Proof: Let x ≠ y  pairwise T0-space. Then there exists 

a Ti-open set G containing x but not y. Since X is a 

pairwise gR0-space by theorem 4.3 and the fact that 

every open set is g-open, Tj-gclx  G. Also y  Tj-

gclx. Take H = X Tj-gclx}, which is a g-open set 

containing y but not x. Thus open sets G and H satisfy 

the requirement of pairwise g1. 

 

Theorem 4.6: If f: (X, T1, T2)  (Y, T1*, T2*) is a 

pairwise closed and pairwise continuous mapping from 

a Pg-space X to a Space Y, then Y is also a Pg-space. 

Proof: Let y1 and y2  Y and y1  Ti*-cl{y2}. Then 

there exists a Ti*-open set V1 such that y1  V1 and y2  

V1. Put f 
1

(V1) = G. Since f is pairwise continuous 

therefore G is a Ti-open set in X. Also f 
1

(y1)  G, f 
1

(y2) ∩ G = .  Let x1  f 
1

(y1) and x2  f 
1

(y2). 

Therefore, x1  Ti-cl{x2}. By pairwise Pg-axiom on X, 

x2   Tj-gcl{x1}. Thus, there is a Tj- g-open set Vx in X 

containing x2 but not x1. X  Tj-gcl {x1} = V
2x (say) 

containing x2 but not x1. Let V = {V
2x : x2  f 

1
(y2)}.  

Then V is a Tj-g-open set in X containing f 
1

(y2) but not 

x1. So VX   is a Tj-g-closed set in X. Since f is 

pairwise closed and pairwise continuous, V)f(X   is 

Tj*-g-closed in Y not containing y2. Hence 

V))(f(XY   is a Tj*-g-open set in Y containing y2 

but not y1. Hence y2  Tj*-gcl {y1}. Thus Y is a 

pairwise Pg-space. 
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