

Some Properties of Pg and Pairwise Pg - Spaces

Yogesh Kumar¹, Padmesh Tripathi²

^{1,2}Department of Applied Sciences and Humanities, IIMT College of Engineering, Greater Noida, Uttar Pradesh, India

ABSTRACT

In this article, the separation axiom R_0 of Shanin and later rediscovered by Davis, has been generalized to P_g - axiom using the concept of g-closure. The bitopological analogue of P_g - axiom named as pairwise P_g -axiom has been introduced and different characterizations and properties of P_g -space and pairwise P_g -space have been discussed. **Keywords:** P_g - axiom, g-closure, g-kernel, pairwise P_g - axiom.

I. INTRODUCTION

The separation axiom R_0 was introduced and studied by Shanin [8]. Later it was rediscovered by Davis in [1]. A space X is known as **R**₀-**space** if $x \notin cl\{y\}$ implies that $y \notin cl\{x\}$. We apply the notion of g-closure to define new separation axioms named as P_g -spaces by using gclosure in the definitions of R_0 . In bitopological spaces pairwise- R_0 and pairwise- R_1 spaces were seen in [7] and pairwise- R_0 spaces have been studied in Misra and Dube [3].

In what follows, let $i, j \in \{1, 2\}$ and $i \neq j$.

II. PRELIMINARIES

A subset A of X is said to be **g-closed** if $cl(A) \subset U$ whenever $A \subset U$ and U is open in (X, T) [2]. Clearly every closed set is g-closed. Complement of g-closed is called g-open. A set U is said to be g-neighbourhood of point $x \in X$ if $x \in U$ and U is g-open [4]. The family of all g-open (resp. g-closed) sets in a space (X, T) is denoted by GO (X, T) (resp. GC (X, T)). The g closure of a subset A in a space X, denoted by gcl A is defined as the intersection of all g-closed sets that contain A [2]. A space X is said to be g_1 if for any two distinct points x and y of X there exists a g-open set U containing x but not y and a g-open set V containing y but not x [9]. A bitopological space (X, T_1, T_2) is said to be **pairwise** g_1 if for each pair of distinct points x, y of X, there is a T_ig-open set U containing x but not y and a T_i-g-open V containing y but not x [9]. A bitopological space X is pairwise R_0 if for each $G \in T_i$, $x \in G$ implies T_i -cl ({x}) \subset G [5]. A function f : (X, T₁, T₂) \rightarrow (Y, T₁*, T₂*) is

defined to be **pairwise continuous** if each of the functions between topological spaces $f : (X, T_1) \rightarrow (Y, T_1^*)$ and $f : (X, T_2) \rightarrow (Y, T_2^*)$ is continuous [6]. Similarly, pairwise closed is also defined.

Lemma 2.1 [2]: If f: $X \rightarrow Y$ is a closed and continuous and if A is g-closed set in X, then f (A) is g-closed in Y. **Lemma 2.2** [2]: If f: $X \rightarrow Y$ is a closed and continuous and if A is g-closed (res. g-open) set in Y, then f⁻¹ (A) is g-closed (res. g-open) in X.

III. P g - SPACE

Definition 3.1: A space X is said to be a P_g -space if $x \notin cl\{y\}$ implies that $y \notin gcl\{x\}$. Clearly, every R_0 space is a P_g -space but converse is not true.

Example 3.2: Let $X = \{a, b, c\}, T = \{\phi, \{a\}, \{b, c\}, X\}, GC(X, T) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}.$ Then the space X is a P_g-space but not a R₀-space.

Theorem 3.3: A space X is a P_g -space if and only if for each open set S and each $x \in S$, $gcl{x} \subseteq S$.

Proof: Let S be an open set containing x and let $y \notin S$. Then $x \notin cl\{y\}$. By P_g -axiom, $y \notin gcl\{x\}$. Thus $gcl\{x\} \subseteq S$.

Conversely, let $x \notin cl\{y\}$. Then there is an open set S (say) containing x, which has empty intersection with $\{y\}$, i.e. $y \notin S$. By hypothesis, $gcl\{x\} \subseteq S$ and thus, $y \notin gcl\{x\}$. Hence X is a P_g-space.

Theorem 3.4: For a space X, the following are equivalent:

(a) X is a P_g-space.

(b) For each $x \in X$, $gcl\{x\} \subseteq ker\{x\}$.

(c) If F is a closed set in X, then F is the intersection of all the g-open sets containing F.

(d) If S is an open set in X, then S is the union of all the g-closed sets in X contained in S.

(e) For a non empty set A, and an open set S in X such that $S \cap A \neq \phi$, there is a g-closed set $F \subseteq S$ such that $F \cap A \neq \phi$.

(f) For any closed set F in X and $x \notin F$, $gcl\{x\} \cap F = \phi$.

Proof: (a) \rightarrow (b): Let $y \in gcl\{x\}$ and S be an open set containing x. Since X is a P_g-space therefore by theorem 3.3, $gcl\{x\} \subseteq S$ and thus $y \in S$. Therefore $x \in gcl\{y\}$, i.e. $y \in ker\{x\}$. Hence $gcl\{x\} \subseteq ker\{x\}$.

(b) \rightarrow (c): Let F be a closed set. Let $x \notin F$. Then X - F is an open set containing x. If

 $y \in gcl\{x\}$, then from (b), $y \in ker\{x\}$ and therefore $x \in cl\{y\}$. So $y \in X - F$. Hence, $gcl\{x\} \subseteq X - F$, which implies, $F \subseteq X - gcl\{x\}$ is a g-open set that does not contain x. Thus x does not belong to the intersection of all the g-open sets, which contain F. Hence (c) holds.

(c) \rightarrow (d): By taking complements of (c), we get (d). (d) \rightarrow (e): Since $S \cap A \neq \phi$, therefore let $x \in S \cap A$. Then $x \in$ open set S. Therefore, from (d), S is the union of all the g- closed sets of X contained in S. Hence there exists a closed set F (say) such that $x \in F \subseteq S$, which implies that $F \cap S \neq \phi$. Thus (e) holds.

(e) \rightarrow (f): Let F be a closed set in X and $x \notin F$. Then X - F is an open set in X such that $(X - F) \cap \{x\} \neq \phi$. Therefore, from (e), there is a g-closed set K such that K $\subseteq X - F$ and K $\cap \{x\} \neq \phi$. So gcl $\{x\} \subseteq X - F$. Hence gcl $\{x\} \cap F = \phi$. Thus (f) is true.

(f) \rightarrow (a): Let S be an open set containing x. Then, from (f), we have $(X - S) \cap gcl\{x\} = \phi$ and hence $gcl\{x\} \subseteq$ S. Thus by theorem 3.3, X is a P_g-space.

Theorem 3.5: A P_g -space X is g_1 if it is T_0 .

Proof: Let $x \neq y \in T_0$ -space X. Then, there exists an open set G containing x but not y. Since X is P_g -space therefore, by theorem 3.3, $gcl\{x\} \subseteq G$. Therefore $y \notin gcl\{x\}$. Take $H = X - gcl\{x\}$ which is a g-open set containing y but not x. Also every open set is g-open.

Thus g-open sets G and H satisfy the requirement of g_1 -axiom for the space X.

Theorem 3.6: If f is a closed and continuous mapping from a P_g -space X to a Space Y, then Y is also a P_g -space.

Proof: Let y_1 and $y_2 \in Y$ and $y_1 \notin cl\{y_2\}$. Then there exists an open set V_1 such that $y_1 \in V_1$ and $y_2 \notin V_1$. Put $f^{-1}(V_1) = G$. Since f is continuous therefore G is an open set in X. Also $f^{-1}(y_1) \in G$, $f^{-1}(y_2) \cap G = \phi$. Let $x_1 \in f^{-1}(y_1)$ and $x_2 \in f^{-1}(y_2)$. Therefore $x_1 \notin cl\{x_2\}$. By P_g -axiom on X, $x_2 \notin gcl\{x_1\}$. Thus there is a g-open set V_x

in X containing x_2 but not x_1 . X – gcl $\{x_1\} = V_{x_2}$ (say) containing x_2 but not x_1 .

Let $V = \bigcup \{V_{x_2} : x_2 \in f^{-1}(y_2)\}$. Then V is a g-open set in X containing $f^{-1}(y_2)$ but not x_1 . So X - V is a gclosed set in X. Since f is closed and continuous, therefore f(X - V) is g-closed in Y containing y_1 but not $y_2[2]$. Hence Y - (f(X - V)) is a g-open set in Y containing y_2 but not y_1 . Hence, $y_2 \notin$ gcl $\{y_1\}$. Thus Y is a P_g-space.

IV. PAIRWISE Pg- SPACE

Definition 4.1: A bitopological space (X, T_1, T_2) is said to be pairwise P_g -space if $x \notin T_i$ -cl{y} $\Rightarrow y \notin T_j$ -gcl{x}.

Example 4.2: Let $X = \{a, b, c\}, T_1 = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}, T_2 = \{\phi, \{a, b\}, X\}.$ GC (X, T₁) = $\{\phi, \{c\}, \{b, c\}, \{a, c\}, X\},$ GC (X, T₂) = $\{\phi, \{c\}, \{b, c\}, \{a, c\}, X\}.$ Then (X, T₁, T₂) is a pairwise P_g-space.

Theorem 4.3: A space X is a pairwise P_g -space if and only if for each T_i -open set S and each $x \in S$, T_j -gcl $\{x\} \subseteq S$.

Proof: Let S is a T_i -open set containing x and let $y \notin S$. Then $x \notin T_i$ -cl{y}. Since X is a pairwise P_g -space, therefore $y \notin T_i$ -gcl{x}. Hence T_i -gcl{x} $\subseteq S$.

Conversely, Let $x \notin T_i$ -cl{y}. So there is a T_i -open set S (say) containing x but not y. By hypothesis, T_j -gcl{x} \subseteq S and thus $y \notin T_j$ -gcl{x}. Hence X is a pairwise P_g -space.

Theorem 4.4: A space X is a pairwise P_g -space if and only if for each $x \in S$, T_i -gcl $\{x\} \subseteq T_i$ -ker $\{x\}$.

Proof: Let $y \in T_j$ -gcl{x}and S be a T_i -open set containing x. Since X is pairwise P_g , therefore, T_j -gcl{x} \subseteq S. Hence $y \in$ S. So $x \in T_i$ -cl{y}, i.e. $y \in T_i$ -ker{x}. Thus, T_j -cl{x} $\subseteq T_i$ -ker{x}.

Conversely, Let $x \notin T_i$ -cl{y}. Then $y \notin T_i$ -ker{x}. Therefore, by hypothesis, $y \notin T_j$ -gcl{x}. Hence X is a pairwise P_g -space.

Theorem 4.5: A pairwise P_g -space X is pairwise g_1 if it is pairwise T_0 .

Proof: Let $x \neq y \in$ pairwise T_0 -space. Then there exists a T_i -open set G containing x but not y. Since X is a pairwise gR_0 -space by theorem 4.3 and the fact that every open set is g-open, T_j -gcl{x} \subseteq G. Also $y \notin T_j$ gcl{x}. Take $H = X - T_j$ -gcl{x}, which is a g-open set containing y but not x. Thus open sets G and H satisfy the requirement of pairwise g_1 .

Theorem 4.6: If f: $(X, T_1, T_2) \rightarrow (Y, T_1^*, T_2^*)$ is a pairwise closed and pairwise continuous mapping from a P_g-space X to a Space Y, then Y is also a P_g-space.

Proof: Let y_1 and $y_2 \in Y$ and $y_1 \notin T_i^*-cl\{y_2\}$. Then there exists a T_i^* -open set V_1 such that $y_1 \in V_1$ and $y_2 \notin V_1$. Put $f^{-1}(V_1) = G$. Since f is pairwise continuous therefore G is a T_i -open set in X. Also $f^{-1}(y_1) \in G$, $f^{-1}(y_2) \cap G = \phi$. Let $x_1 \in f^{-1}(y_1)$ and $x_2 \in f^{-1}(y_2)$. Therefore, $x_1 \notin T_i$ -cl{ x_2 }. By pairwise P_g -axiom on X, $x_2 \notin T_j$ -gcl{ x_1 }. Thus, there is a T_j - g-open set V_x in X

containing x_2 but not x_1 . $X - T_j$ -gcl $\{x_1\} = V_{x_2}$ (say)

containing x_2 but not x_1 . Let $V = \bigcup \{V_{x_2} : x_2 \in f^{-1}(y_2)\}$. Then V is a T_j-g-open set in X containing $f^{-1}(y_2)$ but not x_1 . So X - V is a T_j-g-closed set in X. Since f is pairwise closed and pairwise continuous, f(X - V) is T_j^* -g-closed in Y not containing y_2 . Hence Y - (f(X - V)) is a T_j^* -g-open set in Y containing y_2 but not y_1 . Hence $y_2 \notin T_j^*$ -gcl $\{y_1\}$. Thus Y is a pairwise P_g -space.

V. REFERENCES

- A. S Davis.(1961)."Indexed system of neighbourhoods for general topological spaces", Amer. Math. Monthly, 68 (1961), 886-893.
- [2]. N. Levine.(1970)."Generalized closed sets in topology", Rend. Cir. Mate. Di. Palermo. Series II, Vol. 21, 1970, 89-96.
- [3]. D.S. Misra and K.K. Dube.(1973)."Pairwise R0 spaces", Ann. De. La. Soc. Sci. Bruxelles, T-87, 1(1973), 3-15.
- [4]. B.M. Munshi.(1986)."Separation Axioms", Acta Ciencia Indica, 12 m (2) (1986), 140-144.
- [5]. M.G. Murudeshwar and S.A. Naimpally.(1966)."Quasi-Uniform Topological Spaces", Noordhoff, Groningen, (1966).
- [6]. W.J. Pervin.(1967)."Connectedness in bitopological spaces", Indag. Math 29 (1967), 369-372.
- [7]. I.L. Reilly.(1976)."On essentially pairwise Dausdorff spaces", Rendiconti del Circolo Math. Ann.(1976), Series II-TOMO XXV.
- [8]. N.A.Shanin.(1943)."On separation in topological spaces", Dokl, Akad. Nauk,SSSR (N. S.) 38 (1943), 110-113.
- [9]. V.K. Sharma.(1990)."A study of some separation and covering axioms in topological and bitopological spaces", Ph. D. Thesis, Meerut Univ. Dec.(1990).